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SUMMARY 

A new boundary-conforming mapping is developed for the calculation of highly deformed cellular solidifi- 
cation interfaces in a model of directional solidification of a binary alloy. The mapping is derived through 
a variational fomulation that is designed so that the grid penetrates the grooves between cells along the 
interface without causing a loss of ellipticity of the mapping equations. A finite element/Newton method is 
presented for simultaneous solution of the free boundary problem described by the solutal model of 
directional solidification and the mapping equations. Results are compared to previous calculations and 
demonstrate the importance of accurate representation of the interface shape for understanding the solution 
structure. 
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1. INTRODUCTION 

Complex cellular and dendritic microstructures form during directional solidification of a binary 
alloy as a result of interactions between the interface morphology and the solute and temperature 
fields in the surrounding melt and solid. These morphological transitions are readily observed in 
the interface in a thin sample of a binary alloy that is translated at constant speed through an 
externally imposed temperature gradient as shown in Figure 1. As the melt solidifies, solute is 
rejected into the melt according to the phase diagram of the alloy. Diffusion in the melt cannot 
disperse this solute and an enriched layer forms in the melt adjacent to the interface. The melting 
point of the material is increased and, if the temperature is lower than the melting temperature in 
the enriched melt, irregular solidification occurs, giving rise to non-planar melt/solid interface 
shapes. This explanation is the basis of the constitutional supercooling mechanism' for the onset of 
solidification microstructure. 

Experimental observations of approximately two dimensional micr~s t ruc tures~*~ show the 
evolution of cellular and dendritic structures following the onset of instability of the planar 
interface. The goal of numerical solution of models for microstructural solidification is to 
compute the evolution of these structures as a function of operating conditions, e.g. temperature 
gradient, solidification rate and thermophysical properties. 

The continuum solidification models used to model microstructure formation consist of 
transport equations for solute and energy in the melt and the solid and interfacial conditions that 
relate the temperature and concentration fields to the shape of interface. The models consist of 
field equations for diffusion of solute and heat, boundary conditions for conservation of these 
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Figure 1. Schematic drawing of directional solidification of a thin film of a binary alloy. The solid grows in the y-direction 
as the sample moves with constant velocity in this direction from the hot to the cold area. 

quantities at the interface and conditions for thermodynamic equilibrium at the interface. Most 
important is the Gibbs-Thomson equation4 that relates the melting temperature to the concen- 
tration and the curvature of the interface. The onset of cellular solidification is predicted by linear 
stability analysis' of this set of equations, which yields the value of the control parameter, either 
growth rate or temperature gradient, for the onset of small amplitude cells as a function of the 
cellular wavelength. Weakly non-linear analyses6*' of finite amplitude cells predict shapes that 
evolve with a specified wavelength from the critical value of the control parameter. 

Numerical methods for solving these free and moving boundary problems that describe 
microstructure formation must compute simultaneously the field variables and the interface 
shape. The coupling between the interface shape and the field variables introduces implicit 
non-linearities through the boundary conditions that are imposed on the free surface and must be 
addressed by any algorithm for numerical solution. Ettouney and Brown' classified methods for 
numerical solution of free boundary problems by whether the equations are solved in the physical 
domain or on a transformed space, by the iterative method used to account for the non-linearity 
introduced by the free boundary and by the interface condition that is distinguished to compute 
the interface. 

Co-ordinate transformation methods offer a powerful way of making explicit the non-linear 
dependence of the field equations on the unknown interface shape. Here the unknown boundary 
shape is taken into account explicitly through a mapping that transforms the melt and solid 
regions to a new domain with fixed boundaries, one of which corresponds to the mapped free 
boundary. The functional representation of the free boundary appears explicitly in the trans- 
formed field equations and boundary conditions and hence is readily treated by non-linear 
iterative methods applied to the numerical discretization of the equation set.' 

It is clear that the success of such methods hinges on the ability of the mapping to represent 
highly distorted boundary shapes. Mapping methods have been successfully developed for the 
solution of a variety of free boundary problems with specific types of interface shapes, including 
coating f l o w ~ ' 3 ~ ~  and flows around drops and bubbles."-'3 These mapping methods can be 
cliissified according to the categories introduced by Thompson et u / . ' ~ , '  ' as either algebraic 
methods which relate the physical and transformed domains according to simply algebraic 
expressions or smooth, orthogonal and variational methods which require the solution of partial 
difierential equations for construction of the transformed co-ordinates. Each method varies in its 
ability to control key elements of the co-ordinate transformation: the smoothness of the mapping, 
the orthogonality of the transformed co-ordinate curves aad the concentration of the co-ordinate 
curves in the domain. 
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Each of these measures sets constraints on the development of a satisfactory mapping method 
for computation of cellular microstructures in directional solidification because of the extreme 
variations in interface shape that can occur with changes in operating conditions, e.g. temperature 
gradient and growth rate. As the depth of the cell increases, the mapping must remain smooth, 
nearly orthogonal and control the distribution of the co-ordinate curves. No single mapping 
method has been developed that accomplishes these goals for the transition between shallow and 
deep solidification cells. This is the objective of the new mapping method presented here. 

Ungar and Brown7 first computed the evolution of two-dimensional steadily solidifying 
cellular structures that evolve from the planar solidification front. These calculations were based 
on the isotherm/Newton method.8 Here the Galerkin finite element method is used to discretize 
the field equations and Gibbs-Thomson equation which are written in a transformed co-ordinate 
system that is defined by an algebraic mapping written in terms of the Cartesian Monge 
representation y = h( x) for the interface; the mapping and the Monge representation are shown 
schematically in Figure 2(a). The Gibbs-Thomson equation is distinguished as the condition 
defining the interface shape function h( x). The algebraic co-ordinate transformation makes the 
field equations explicitly non-linear in h( x). The non-linear algebraic equations that result from 
the Galerkin formulation are solved by Newton's method.' 

Although the finite element analysis using the Monge representation is very useful for 
calculation of shallow solidification cells and has been extended to transient analysis of single" 
and collections of cells,' it is not applicable to calculations of deep cellular structures. Solidifi- 
cation cells often develop deep and narrow grooves, I dh/dxl g 1, or even re-entrant shapes that 
cannot be represented by the Monge co-ordinate representation. This shortcoming is most 
obvious in the examination by Wheeler and Winters" of the calculations of Ungar and Brown.7 

Ungar and Brown" realized this shortcoming and generalized the isotherm/Newton formula- 
tion to an algebraic mapping method that represents region of a deep cellular structure by 
patches of Cartesian and polar Monge representations; this mapping is shown schematically 
in Figure 2(b). Deep cellular structures were successfully computed using this numerical 
method'g920 and were linked to calculations using the Cartesian representation by transforming 
solutions between the two representations. Although satisfactory for many analyses, this 
methodology fails in steady state and dynamical studies of cells that evolve from shallow to deep 

Physical ,Transformed 
Domain Domain Physical ,Transformed 

Domain Domain 

(a) Cartesian Representation (b) Mixed Cylindrical/Cartesian 
Representation 

Figure 2. (a) Cartesian algebraic mapping of the solidification domain using the Monge representation for the interface. 
(b) Polar/Cartesian algebraic mapping of the region occupied by half a solidification cell. 
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and simultaneously alter the cellular wavelength, by either tip splitting of a single cell or by 
squeezing out a cell along a front. 

Ungar and Brown7 used the Newton/isotherm finite element method and the Cartesian Monge 
representation to compute with decreasing temperature gradient the non-linear evolution of 
families of steady state cells within a sample with prescribed wavelength 1. One of the most 
interesting discoveries of this study was the existence of a secondary bifurcation with a family of 
cells with half the original wavelength, 1/2. This bifurcation behaviour, shown in Figure 4 of 
Ungar and Brown7 and in Figure 12 of this work, was linked by Ungar and Brown to the 
existence of a codimension-two bifurcation point for samples with a particular size, where the 
families of 1 and 1 / 2  cells bifurcate simultaneously from the planar solution. For calculations 
with sample sizes close to this critical dimension, the secondary bifurcation occurs for small 
amplitude cells that are well represented by the Cartesian Monge method. 

However, Wheeler and Winters" demonstrated that the calculations by Ungar and Brown' 
with larger amplitude cells are not reproducible. Attempts to refine the mesh yielded varying 
solution structures. We show here that these results are the direct outcome of the failure of the 
Cartesian Monge representation and demonstrate that the cell shapes are re-entrant. Calcu- 
lations with a model that includes the physics appropriate for re-entrant cells and uses a new 
mapping method yield the secondary bifurcations for deep cells and converge with mesh 
refinement. 

2. SOLUTAL MODEL FOR DIRECTIONAL SOLIDIFICATION 

We consider the two-dimensional directional solidification of a dilute binary alloy. The computa- 
tional domain is shown in Figure 3 and consists of portions of the melt and solid of lateral extent 
L and length l= l , , ,+ l s .  The solutal model (SM) for morphological instability accounts for the 
evolution of the solute concentration field and the position of the free melt/solid interface, but 
assumes that the temperature field is linear in the direction of growth and that it is unaffected by 
changes in the interface shape. These are good approximations when the thermal conductivities in 
the melt and solid are equal, convective heat transfer is negligible and latent heat release is 

Figure 3. Computational domain for the two-sided solutal model. 
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insignificant. Under such conditions the thermal field is mathematically decoupled from the 
solutal field and the interface shape. 

Dimensionless variables are defined by scaling lengths with a characteristic length Lo, time 
with the diffusion time td = Lg/9,, where 9,,, is the solute diffusivity in the melt, temperature 
with the melting temperature of pure material, T:, and concentration with the bulk concentra- 
tion of the alloy, c,. Quantities referring to the melt and solid phases are denoted by the 
subscripts ‘m’ and ‘s’, respectively. 

The dimensionless solute conservation equations in the melt and solid are written in the 
laboratory reference frame as 

_-  acm - v*c, + P(~;Vc,), 
at 

ac, 
- = R,V2c,+ P(t,.Vc,), 
at 

where Rm=9s /9 , , ,  is the ratio of solutal diffusivity in the 

(1) 

(2) 

solid to that in the melt and 
P = Lo V / 9 ,  is the solutal Peclet number, expressing -the importance of solutal diffusion trans- 
port relative to the uniaxial convection of solute caused by translation of the sample in the 
y-direction. 

The melt/solid interface is assumed to be a Gibbs dividing surface: meaning that the interface 
do, is a two-dimensional boundary separating two continuous phases. Here it is assumed that the 
interface is described by a general parametrization of the form F ( x ,  y, t ) = O ,  where F > O  in the 
melt and F < O  in the solid. The solute balance at the interface gives 

f i ~ V c , - R m i i ~ V c s = ( c m - c s )  -Pe;n+ -- ( A A [ ~ ~ F ~ ~ ] F = o )  at ”” 

where fi is the unit vector normal to the interface pointing into the melt, 

44 F = O  

(3) 

(4) 

In addition, local thermodynamic equilibrium at the interface is used to relate the composition of 
melt and solid at the interface as 

c, = kc, at aD, ,  (5)  

where k is the solute partition coefficient. The effect of concentration and curvature on the melting 
temperature is accounted for by the Gibbs-’Thomson equation4 as 

T= 1 + m / k +  Gy= 1 +mc,,,+2%r at all,, (6) 
where G is the dimensionless temperature gradient, % is the local mean curvature of the interface 
and m is the dimensionless slope of the liquidus line. The dimensionless capillary constant 

= f / L ,  is defined in terms of the capillary length f ,  which is the ratio of the surface energy y of 
the melt/solid interface to the latent heat of fusion, AHf, i.e. F=y/AHf. We assume that y is 
homogeneous and isotropic. For the interface parametrization F ( x ,  y, t ) = O ,  the curvature is 
given byz1 

2% E -V;ii, 
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where V, = ( I  - ;l;l).V is the surface gradient operator and I is the identity tensor. For a two- 
dimensional interface an alternative expression for the curvature is 

d 4  2 2 = - - ,  
ds (7) 

where 4 is the angle formed by the unit vector tangent to the interface and pointing in the 
direction of increasing interfacial arc length and the unit vector 2,. Expression (7) is particularly 
convenient for the finite element approximations used here because it leads directly to the weak 
fomulation of the Gibbs-Thomson equation as discussed in Section 4. Others” have made use of 
this advantage in the solution of viscous free surface flows. 

The far-field conditions for the solute concentration are based on a global solute balance for 
the finite domain (see Figure 3) and are 

2;Vc, = P(l -c,) at a D 2 ,  (8) 

2;Vc, = O  at do,, (9) 
where diffusion in the solid far from the interface is neglected. Reflective symmetry conditions are 
assumed for the concentration and the interface shape at the lateral boundaries of the domain: 

&;Vc, = 0 and C;Vc, = 0 at d D 3 ,  dD4, (10) 

4 = 0 at d D 3 , d D 4 ,  (1 1) 

where condition (1 1 )  specifies the reflective symmetry of the interface. 
Equations (1)-( 11) constitute the solutal model (SM) of directional solidification in two 

dimensions. The SM is characterized by the six non-dimensional parameters k ,  m, P ,  R,, and G. 
This model is called the two-sided SM because diffusion in both phases is included. The one-sided 
SM results when solute diffusion in the solid is neglected (R,=O). 

Although setting R,=O and removing the solute transport problem in the solid phase from the 
solidification model halves the size of the modelling problem, this one-sided model is severely 
limited in the range of cell shapes for which it is appropriate. More precisely, neglecting transport 
in the solid phase restricts the one-sided model from correctly describing solute transport in cells 
with re-entrant grooves, like the one shown in Figure 4. Consider material that translates along 

I MELT I 

I 

Figure 4. Schematic showing a solidification cell with re-entrant grooves. 
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the dashed line in Figure 4. Material solidifies at the melt/crystal interface (A), moves through the 
solid, remelts in the groove (B) and resolidifies at  the groove bottom (C). Modelling of re-entrant 
cells requires computing the concentration in the solid that links the concentration at points 
A and B in Figure 4. Setting R ,  = 0 and neglecting the solute transport equation (2) destroys this 
information in the solutal model. Ungar and Brownlg realized this important point and first 
included solid phase solute transport in the solutal model. Othersz3 have neglected this important 
coupling. 

While typical thin film directional solidification systems have large lateral dimensions, we 
confine our calculations to samples of the order of the most dangerous wavelength from the 
appropriate neutral stability curve, i.e. the wavelength corresponding to minimum P (for fixed 
G) or maximum G (for fixed P) for the onset of cellular forms. This approach has been used in 
other ~alculat ions.~~'  

3. DEVELOPMENT OF A NEW BOUNDARY-CONFORMING MAPPING METHOD 

3.1. Background 

Generally, the mapping problem for a three-dimensional region consists of finding the trans- 
formed co-ordinates c i (xl ,  x2, x3), i =  1,2,3,  which describe a one-to-one mapping of each point 
(x', x2, x3 )  of the physical domain onto a point ( 5  ', t 2 ,  t3) of a transformed domain. Boundary- 
conforming mappings require the boundaries of the physical domain to coincide with co-ordinate 
lines of the transformed domain; the two-dimensional boundary-conforming mapping problem is 
shown schematically in Figure 5. 

Valuable insight into the mapping problem comes from realizing that the construction of 
a curvilinear co-ordinate is equivalent to determining the components of the metric tensor G as 

and that the independent components { Gij} of the metric tensor are the degrees of freedom of the 
mapping problem.z4 In a Euclidean space the metric tensor has three independent components in 
three dimensions and two components in two  dimension^.'^ Thus three constraints are needed to 
specify the mapping in three dimensions and two constraints in two dimensions. These con- 
straints are not always explicit in various mapping methods where the corresponding degrees of 

Computational 

Y 

X 5 
Figure 5. Schematic representation of boundary-conforming mapping between points in the physical domain (I, J') and 

points in the computational domain ( 5 ,  q ) .  
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freedom are distributed over a larger number of weaker equations and boundary conditions. 
In our formulation the transformed co-ordinate lines are used to discretize the domain in 
quadrilateral finite elements. 

'Three characteristics are used to quantitatively describe a mapping: smoothness, orthogonality 
and mesh concentration. A two-dimensional curvilinear co-ordinate system becomes smoother as 
the magnitude of the gradients of the transformed co-ordinates, I V t  I and JVy  1 ,  decreases. The 
quantity (VY * V V ) ~  is a measure of deviation from orthogonality; another measure is introduced 
later in this section. Finally, mesh concentration is measured as the ratio of the area of a part of 
the physical domain to the area of the corresponding part in the transformed domain given by the 
Jacobian of the transformation, J = xc y, - x,y;, where the subscripts denote partial differenti- 
ati'on, i.e. xc = dx/dt.  

14 variety of mappings have been proposed and are reviewed by Thompson et ~ 1 . ~ ~ ~ ' ~  These 
techniques differ in the degree of control of the smoothness, orthogonality and mesh concentra- 
tion. For example, the algebraic mappings shown in Figure 2 guarantee control over the 
concentration of co-ordinate lines near the interface, but insure no degree of smoothness or 
orthogonality and therefore may result in highly deformed meshes. 

Other methods for generating smooth meshes are based on solution of Laplace or Poisson 
equations and focus on controlling the values of I V< I and I Vy I over the domain.26 Alternatively, 
orthogonal mappings satisfy (V5-Vq)2=0, leaving one degree of freedom for control of the 
co-ordinate aspect ratio J(gl /g22) over the domain and the values of the transformed co- 
ordinates on the b o u n d a r i e ~ . ~ ~ * ~ '  Conformal mappings are the most restrictive because they 
require both othogonality and unit aspect ratio, allowing no degrees of freedom to control any 
other characteristics of the mesh. These restrictions can result in ill-conditioned conformal 
maps.28 

A more efficient alternative to these methods is the development of a mapping based on 
optimizing a combination of the characteristics of the co-ordinate transformation; such tech- 
niques are referred to as variational methods. Brackbill and S a l t ~ m a n ~ ~  used the functionals 

r r  

J J D  

I ,  = J J (V<.Vq)'J3dxdy, 
D 

r r  

defined over the physical domain to describe the deviation of the mesh smoothness, orthogonality 
and desired concentration respectively. The mapping problem was stated as the minimization of 
the composite functional 

with the corresponding Euler-Lagrange equations3' 

The set of second-order partial differential equations (17) for x(5, y)  and y(5, y)  are the mapping 
equations, in which the relative importance of orthogonality, smoothness and mesh concentra- 



COMPUTATION OF HIGHLY DEFORMED SOLIDIFICATION INTERFACES 989 

tion is set by the weighting factors I ,  and 1,. The mesh spacing is also varied according to the 
preset or solution-dependent function w in (15). 

Kreis et d 3 1  pointed out that the formulation (16) involves dimensionally inhomogeneous 
terms and rescaling of the weighting should be done for consistent control of the grid properties. 
To avoid such rescaling, Christodoulou and Scriven" introduced a new orthogonality functional 
which scales with the smoothness. They used a measure for deviation from orthogonality based 
on the generalized Cauchy-Riemann conditions St, = qy and St, = - q x .  Their orthogonality 
functional is 

with 5, y and S as the unknown functions. The Euler-Lagrange equations corresponding to this 
functional are 

V . ( S V < )  = 0, v .( f vv)  = 0, s = J ( 4 ) .  x: + Y ,  
xtl + Y ,  

(19) 

On the basis of this orthogonality functional, Christodoulou and Scriven proposed the mapping 
equations 

where E weights the smoothness functional relative to the orthogonality measure and el and E~ 

control the concentration of the mesh in the 5- and q-direction respectively. The first two terms in 
(20) and (21) are the result of minimizing the functional I ~ + E I ,  and the third term is added to 
control the spacing of the mesh. The fact that there is no contribution to the minimized functional 
to control mesh spacing and that this contribution is added after the minimization does not make 
(20) and (21) fundamentally different from the equations derived by Brackbill and S a l t ~ m a n . ~ ~  

Equations (20) and (21) combine several classes of mapping methods. Nevertheless, these 
equations are limited because their part corresponding to mesh concentration is mathematically 
hyperbolic. Thus high positive values of c1 and c2 result in a second-order hyperbolic equation set 
which, in general, is not a well-posed boundary value problem.32 This limitation severely hinders the 
application of the mapping method in calculation of cellular microstructures, where the mesh must 
accurately describe highly distorted cell shapes. Preventing loss of ellipticity in the generation of 
these grids results in increased smoothness, which in turn results in meshes that do not penetrate into 
deep and narrow grooves. The limitations between generation of an adequate grid and loss of 
ellipticity of the mapping equations are demonstrated in the sample calculations that follow. 

To test the robustness of the variational mapping method for calculations of cellular micro- 
structures, we consider its application to a problem with a fixed domain that resembles a solidifi- 
cation cell and test the variational mapping, (20) and (21), for various degrees of deformation of 
this domain. The boundary conditions at the bottom boundary of the physical domain are set by 
requiring that the t-axis of the transformed domain coincides with this boundary, i.e. y = 0 along 
the bottom. In addition, it is required that the arc length is equally distributed on the bottom 
boundary with respect to the co-ordinate 5 ,  i.e. 5=s(()/so, where s is the boundary arc length 
measured from x=O and so is the total arc length of the boundary. Reflective boundary 
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conditions are assumed at y = I,, i.e. 9 =constant and fi * V t  = 0, where fi is the unit normal ro the 
boundary, and on the lateral sides of the domain, i.e. 5 =constant and fi * Vy = 0. Equations (20) 
and (21) are solved with these boundary conditions, using Galerkin’s finite element method, as 
detailed in Section 4 for the more general case of the coupled solidification/mapping problem. 

The performance of the variational mapping is presented in Figure 6(a) for the domain around 
a moderately distorted boundary. Here the mesh is concentrated close to the deformed boundary 
by using the following expressions for ( E ~ ,  E,):  E~ =O and E ,  = e 2  exp( -4~). For very small values 
of the weight factor e ,  the mesh co-ordinate in the V-direction avoids the groove of the cell. 
However, as e2 increases, the mesh concentrates close to the groove, resulting in a satisfactory 
mapping. 

The variational mapping is less successful for highly distorted domains, as demonstrated in 
Figure 6(b). Here the smoothing part of the mapping equations tend to smooth out abrupt 
changes in the co-ordinate curves caused by the boundary shape. This effect forces the mesh to 
concentrate over convex boundaries and avoid concave ones. More 5-co-ordinate lines are forced 
into the groove only when e2 is increased significantly. This improves the mapping only up to the 
point where the equations become hyperbolic and the boundary value problem becomes ill- 
posed. For the interface shape shown in Figure 6(b) this occurs at e2=0.33. The discretized 
equations cannot be solved for larger e 2 .  The results shown in Figure 6 were obtained without the 
orthogonality term in (20) and (21). Including the orthogonality constraint necessitates even 
higher weightings on the concentration control term for meaningful mappping results, leading to 
numerical failure of the mapping even for interfaces considerably less deformed than that shown 
in Figure 6(b). (See Note Added in Proof at the end of the paper.) 

(a )  Moderately Distorted Domain (e2 = 0.06, 0.18, 0.36) 

(b) Highly Distor ted Domain (e2 = 0.06, 0.18, 0.33) 

Figure 6. Sample mapping results for fixed domains using the mapping equations (20) and (21) with = O  and 
e2 =e2exp(-4q), 
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3.2. Mapping for deep cells 

It is clear that a more specific method is needed for successful mapping of the region inside one 
or more highly deformed cells or any other highly distorted interfacial shape. The first step 
towards the development of such a method is to realize that the two sets of co-ordinate lines play 
different roles in free interface problems. The co-ordinate lines parallel to the interface (<-curves) 
should follow or even concentrate close to the interface, while the co-ordinate lines normal to the 
interface (q-curves) are simply required to intersect smoothly and orthogonally with <-curves.* 
This anisotropy in the mapping transformation is not captured by the existing variational 
formulations. Another important observation results from the symmetry of the problem. In order 
for the mapping to behave consistently for any number of interface cells, any control function 
used in the mapping equations should depend only on q. 

A two-step methodology is proposed to develop a transformation that has these features. First, 
a set of <-curves that follow the interface as closely as possible is produced; then, keeping the 
t-curves constant, pcurves are constructed so that smoothness and orthogonality of the co- 
ordinate system are optimized. This decoupling is pivotal in achieving the desired control while 
preserving the ellipticity of the mapping equations. 

In the first step a Poisson equation is written to define the q-co-ordinate as 

where 

Here the scaling condition on a ( q )  forces the extrema of the <-co-ordinate lines to be equidistant 
in the y-direction. This prevents the co-ordinate lines from concentrating over convex parts of the 
interface as opposed to concave portions of it. The forcing functionf(q) controls the concentra- 
tion of the mesh in the q-direction; negative values off(g) concentrate the <-curves towards the 
interface without introducing hyperbolic terms in the mapping equations. 

The second step in the development of the mapping equations is straightforward and involves 
minimization of the combination of orthogonality and smoothness functionals I ‘  = I  b + &(q)ZS (see 
(13) and (18)) with respect to < and S only. The second mapping equation is obtained as the 
Euler-Langrange equation for the functional I ’ as 

Equations (22) and (24) are the proposed mapping equations. Since this method involves 
combining smooth and variational parts, we refer to it as the ‘mixed mapping method’ (MMM). 

Calculations for sample domains using the MMM have been performed to compare it with the 
variational mapping method described by (20) and (21). The test problem is the same one as used 
in Figure 6. Mappings generated by solution of (22) and (24) using the finite element method with 
no spacing control ( f ( q )  =O), E = 0.2 and a(q )  = 100 are shown in Figure 7(a). Here the ability of 
the MMM to follow the interface with increasing depth is clear. Mappings generated with 
increasingly narrow and re-entrant cells are shown in Figure 7(b). In this case spacing control was 

* Co-ordinate curves with q =constant and (=constant are referred to as <-curves and q-curves respectively. 
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(a) Increasingly Distorted Domains 

(b) Narrow and Reen t ran t  Domains 

Figure 7. Sample mapping results for fixed domains using the mixed mapping method of (22) and (24). The two sequences 
of results show the performance of the mapping as (a) the cell depth is increased and (b) the cell becomes both narrow and 

re-entrant. 

implemented by incorporating a forcing function of the form f ( q )  = - lo00 exp( - 7q) to con- 
centrate the {-curves close to the distorted boundary. It is apparent from Figure 7(b) that the MMM 
consistently represents increasingly narrow and re-entrant domains. 

The MMM equations are used for the representation of the solidification domain shown in 
Figure 3. For this case the boundary conditions are similar to the ones used for the test problem. 
The melt/solid interface coincides with the paxis of the transformed co-ordinate system, while the 
arc length is equidistributed with respect to <: 

Orthogonality boundary conditions are assumed on the other domain boundaries: 

&;V< = 0 and q = 1, -1 at do,, aD2,  (26) 

&;Vq = 0 and < = 0 , l  at aD3,  aD4. (27) 

4. FINITE ELEMENTPEWTON FORMULATION OF THE 
SOLIDIFICATION/MAPPING PROBLEM 

The steady free boundary problem for cellular solidification, (1)-( 1 l), is solved simultaneously 
with the mapping equations (22) and (24) and boundary conditions (25)-(27) to compute the 
conc:entration fields { c,((, q) ,  c,((, q ) }  and the co-ordinate transformations { x(<, q),  y ( < ,  q ) }  as 
a function of the parameters. The shape of the interface is recovered in parametric form as 
x=x( ( ,  q = O )  and y = y ( < ,  q = O )  for 0<(<1. The Galerkin finite element formulation of the 
discrete problem is presented below. 
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Following Ungar et a1.,16 we introduce a new concentration variable defined over the solidifi- 
cation domain D = D,u D,, namely 

The solute field C(x, y )  is approximated on D in terms of Lagrangian biquadratic basis functions 
{ m i }  as 

N 

c(t, V )  = C Ci@'(t, v ) ,  (29) 
i =  1 

where ( C i >  are unknown algebraic coefficients and N is the total number of basis functions. 
Similarly, the co-ordinates of the physical domain are approximated in terms of unknown 
coefficients (xi, yi} and Lagrangian b ihear  basis functions { Y  '(t, q ) }  as 

where M is the total number of these functions. 
Taking the inner products of (1) and (2) at steady state with mi in the melt and solid phases 

respectively, integrating by parts and adding the resulting equations yields the weak forms of the 
conservation equation as 

-6., v c ~ v ~ i d a - R , k % ~ V C ~ V @ i d A + ~ ~ ~ P ( ~ ~ ~ V C ) @ i d A + k  6. P(&;VC)@dA 

P (  1 - C)@,'ds + (1 - k)CP&,.fi@'ds = 0, i =  1, . . . , N .  (31) 
+ I, I, 

Here the boundary conditions (3), (5) and (8)-( 10) have been used to resolve boundary integrals 
that resulted from application of the divergence theorem.16 

The Gibbs-Thomson equation is discretized by forming inner products with respect to Y and 
integrating by parts. Substituting the boundary condition (1 1) into the resulting equation yields 

where { n i }  are the indices of the basis functions which are non-zero at the interface q = 0. 
Although the development of discrete versions of the mapping equations (22) and (24) is 

analogous to the application of Galerkin's method to the solution of conservation equations, the 
form of the Gibbs-Thomson boundary condition requires special treatment. The boundary 
conditions on the domain D for the mapping equations (25)-(27) are incorporated in the weak 
forms of (22) and (24) to give 

(a-Vq)-V@'dA + 

(y - lm)Y ds + HI bT = 0, H+ CO, (33) 

(34) 
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where the index i is carried over all basis functions {Yi}, i.e. i=  1, . . . , M .  The constant H is 
introduced as a penalty parameter33 such that H 9 1. Then, if Y '( t ,  y ~ )  is non-zero on a particular 
part of the boundary, the residual equations reduce to only the associated boundary conditions. 
For example, " ' ( 5 ,  q )  non-zero on do, gives I&=O for (33). 

A.ccordingly, the coupling between the solidification problem and the mapping problem arises 
from using the weak formulation of the Gibbs-Thomson equation (32) as an essential boundary 
condition in the mapping problem. This coupling is consistent with choosing the Gibbs-Thom- 
son condition as the distinguished boundary condition in the isotherm/Newton method.* 

The weak formulation of the solidification/mapping problem given by (31)-(34) is greatly 
simplified in the transformed co-ordinate system ( 5 ,  q),  since all the boundaries appearing in 
these equations are co-ordinate lines in the transformed system. Thus the calculations of the 
integrals in the weak formulation are straightforward using the transformation relations in the 
Appendix. 

Equations (31)-(34) are a system of non-linear algebraic equations with N +  2M unknowns 
{Ci, x j ,  yj}, i= 1, . . . , N and j =  1, . . . , M .  This set is solved by Newton's method using LU 
decomposition of the sparse, structured linear equation set that arises at each Newton iteration; 
frontal matrix-handling methods are used to control storage of the Jacobian matrix. Arc length 
coni.inuation methods34 are used to compute families of solutions through folds in the solution 
space as the parameters ( G ,  P )  are varied. 

5. RESULTS 

The finite elementpewton method for solving the coupled solidification/mapping problem is 
used here for two sets of model calculations. In the first the calculations of Ungar and Brown' for 
the one-sided solutal model are repeated to resolve the questions posed by Wheeler and 
Winters." In the second the method is used to repeat the calculations of Ramprasad et ~ l . ' ~  to 
demonstrate the robustness of the new mapping method for representing cell shapes that evolve 
from the almost planar interface to cells separated by deep and narrow grooves. 

An additional condition has been imposed on the mapping problem in these calculations. 
A 5-co-ordinate line close to the interface is required to be horizontal and have a fixed position in 
the physical domain: 

y ( t , t l ) = y *  at y ~ = y * ,  0 ~ 5 ~ 1 .  (35) 
This constraint results in improved mapping results as the interface deforms, because it partially 
deccluples the mapping of the domain close to the interface from the representation of the far-field 
domain. An analogous but more flexible constraint has been used in more recent  calculation^.^^ 

The finite element meshes used here have N ,  elements distributed uniformly in the direction 
lateral to the interface and N,=  N $  + N ;  elements distributed between melt ( N $  elements) and 
solid ( N ;  elements) in the direction of growth. The elements in the melt are graded towards the 
interface ( dDI) to help resolve the diffusion layer caused by solute rejection there. The meshes used 
in specific calculations are listed below. 

5.1. The one-sided solutul model 

The finite element formulation for the one-sided SM is given by (31)-(34) with the integrals over 
the solid domain and its boundaries omitted. Calculations are for the thermophysical properties 
that are appropriate for the P b S b  alloy, which are given in Table I and are the same as used by 
Ungar and Brown7 and more recently by Wheeler and Winters.'* The dimensionless temperature 
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Table I. Dimensionless parameters used in the calculations for the 
one-sided model for directional solidification 

~~ ~ ~~ ~ 

Length ( L )  1 

Slope of the liquidus curve ( m )  - 1.67 10-4 
Capillary constant (I-) 

Growth rate ( P )  0.8 
Segregation coefficient ( k )  0.4 

8.2 x 10-7 
Ratio of diffusivities in solid and melt 0 

0.6 
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Figure 8. Interface deflection A as a function of temperature gradient computed for the one-sided SM and three meshes. 
Filled symbols and letters refer to the sample cell shapes shown in this figure and the mappings shown in Figure 9. 
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I I I  I 

I 

Figure 9. Sample mapping results computed for the one-sided SM and corresponding to the points (a)-(d) of Figure 8(a). 
Only the region of the melt below the line defined by the constraint (35) is shown. 

G is used as a control parameter. For gradients above a critical value G, the planar interface is the 
only solution to the problem; however, for G < G, cellular interface shapes evolve as a bifurcating 
solution family. The results of Ungar and Brown7 and Wheeler and Winters" for the same set of 
calculations and a Cartesian Monge interface representation are described in Section 1. 

The maximum interface deflection A computed with the MMM is summarized in Figure 8(a) 
for analyses with three finite element meshes: ( N c ,  N,,) values are (25,20), (25,30) and (25,40). 
Sarnple interface shapes and mapping results are shown in Figure 9 and correspond to the points 
(a)--(d) in Figure 8(a). The mapping results of Figure 9 correspond only to the domain between the 
constraint line and the interface. A sample mapping result for the entire domain is shown in 
Figure 10. 

which agrees with both 
Ungar and Brown7 and Wheeler and Winters. The cellular family evolves almost vertically; 
Wheeler and Winters report that it is slightly supercritical, i.e. as A+O, the family exists for 
G < G,. As G is decreased from G,, the cells evolve from a sinusoidal form to have deep grooves 
and a molar-shaped top. 

At G = 1.76 x lop4, marked in Figure 8(a) by point (c), the groove becomes vertical and starts to 
develop a re-entrant shape. This cell shape is reproduced by calculations with all three meshes. 
A first point where the family of solutions reverses direction towards increasing values of G is 
found for G = 1.776 x Again this solution structure is computed with all three meshes, as 
shown in Figure 8(b) by the enlargement of this portion of Figure 8(a). 

The existence of re-entrant interface shapes explains the failure of the calculations by Ungar 
and Brown' and Wheeler and Winters," since the interface representation used in these analyses 
does not allow for re-entrant cell shapes. In addition, the calculated re-entrant shapes have 
another more profound implication on the validity of the predictions of the one-sided SM. As 
discussed in Section 2, the calculations of re-entrant cells using the one-sided SM are not physically 
acceptable because the model does not correctly predict the solute concentration of solid that melts 

Cellular shapes bifurcate from the planar state at G = G, x 1.715 x 
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1 .o 

0.5 

0.0 

0.0 0.5 1.0 

Figure 10. Sample result showing mapping for the entire solidification domain for a calculation (point (c) in Figure 8(a)) 
with the one-sided SM. The co-ordinates in physical space (x, y) have been included to show that the line constraint was 

positioned at y=0.15 along the 17th t-curve from the bottom (~=0.68). 

in the re-entrant grooves. This limitation is only removed by including solute transport in both 
phases as in the two-sided model. 

5.2. The two-sided solutal model 

Meaningful calculations of re-entrant solidification cells and secondary bifurcations that result 
in halving of the cellular wavelength are demonstrated by calculations for the two-sided solutal 
model. Again the parameter values are those for the Pb-Sb alloy, except that the diffusivity ratio 
R ,  has been set to unity. The parameter values used are listed in Table I1 and are the same as used 
by Ramprasad et a!.” Using finite element calculations based on the Cartesian and the mixed 
Cartesian/polar interface representations shown in Figure 3(b), these authors demonstrated 
a sequence of secondary bifurcations with increasing growth rate that split a cell into two and 
later four cells. Their calculations were carried out on computational domains with L equal to 
integer fractions of the most dangerous wavelength I,. 

We have repeated these calculations using the MMM introduced here. The computational 
domain is kept fixed at L=Lc/2 and a mesh with ( N 5 ,  N ; ,  NS,)=(100,20,20) is used. This 
discretization results in 20 563 non-linear equations and is fine enough in the lateral ( 5 )  direction 
to resolve all three solution families with wavelengths I c ,  I , / 2  and IJ4 that are expected to form. 
The bifurcation diagram computed for varying P is shown in Figure 11 as a plot of A = A( P ) .  The 
secondary bifurcations between interface families with spatially resonant wavelengths are obvi- 
ous. Sample interface shapes shown in Figure 12 demonstrate the ability of the MMM to 
represent a variable number of cells in a given sample size. This feature is critical to the effective 
analysis of tip splitting caused by the codimension-two bifurcation. 

These calculations are compared directly with the results of Ramprasad et ~ 1 . ’ ~  for calculations 
of cells with wavelength I= &/4. The bifurcation diagram shown in Figure 13 was constructed 
using three meshes and L = I , / 8 .  The results converge with mesh refinement and show the 
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Table 11. Dimensionless parameters used in the calculations for the 
two-sided model for directional solidification 

Length ( L  = &/2) 2.295 
Thermal gradient ( G )  
Segregation coefficient ( k )  0 4  
Slope of the liquidus curve (m) 
Capillary constant (r) 
Ratio of diffusivities in solid and melt 

4 5  x 10-5 

- 1.67 x 10-4 
8.2 x lo-’ 
1 

1.5 

h 

v 
a 

1 .o 
C 

0 
.- 
.a 

B 
0 

0.0 

0.2 0.3 0.4 

P 
0.5 

Figure 11. Bifurcation diagram for the two-sided SM. Sample shapes are shown fo the A,, &/2 and A,/4 families. 

Figure 12. Sample interface shapes and meshes generated for the two-sided SM showing the ability of the MMM to 
represent a variable number of cells in a given domain. These solutions correspond to (a) 1,/2 family, P=0.45, A =  1.166 

and (b) A,/4 family, P=0.47, A =  1.138. 
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Figure 13. Results from solidification/mapping calculations with the two-sided SM for three meshes. Results from 
previous calculations 6 y  Ramprasad et a1.20 are also shown for comparison. 

~ = 0 . 3 6 8 5  ~ = 0 . 3 6 6 2  ~ = 0 . 3 8 8 2  ~ = 0 . 4 2 4 a  ~ = 0 . 4 5 8 7  
A=Q.4334 A=0.5822 A=0.7767 A=0.9533 A = l .  1378 

Figure 14. Mapping results for the two-sided SM corresponding to solutions shown in Figure 13. 

existence of a limit point in P .  These calculations agree well with the results of Ramprasad et at., 
which also are plotted in Figure 13. 

Sample cell shapes and meshes generated by the mapping method are shown in Figure 14. The 
transition between a relatively shallow and a deep cell is easily approximated by the mapping. 
The deepest cell (P=0459) has an approximately vertical sidewall in the groove. Similar to the 
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calculations for the one-sided model, constraints on the [-curves of the form of (35) have been 
used above and below the interface at y =  1.15 and y =  -0 .35 respectively. The results shown in 
Figure 14 are for the part of the domain between these t-curves. 

6 .  CONCLUSIONS 

Simulations of the development of solidification microstructures are particularly difficult free 
boundary problems because of the very rapid development of highly deformed cells and grooves 
and because of the tendency of the number of cells to increase through the tip-splitting 
mechanism described here and in more detail by Ramprasad et dzo Numerical analyses based on 
restrictive representations of the interface can result in erroneous conclusions caused by the 
failure of the representation to allow for either the tip splitting or the formulation of re-entrant 
grooves. 

The new mapping method described here is capable of approximating these features of the 
solutions of cellular solidification models. The method is designed specifically to yield a co- 
ordinate transformation and a mesh that deforms consistently into the deep grooves of cellular 
structures. This capability of MMM results from the mixture of the direct and variational 
formulations used to derive equations (22) and (24). In addition, the MMM is general enough to 
be applied to any other problems where highly distorted interfaces appear. 

The results described in Section 5 demonstrate the utility of the mapping method and the 
robustness of the finite element/frlewton method for analysis of cellular interface structures. We 
show that calculations with the one-sided SM do develop re-entrant cell shapes that cannot be 
represented by the algebraic Cartesian mapping interface representation used before.'.'' Hence 
conclusions reached in these analyses about solution structure are valid only if the slope of the 
interface is not nearly vertical. An equally important observation is that the one-sided solutal 
model is  not a valid description of solute transport when the cell grooves are re-entrant, so that 
carrying the calculations past this point is meaningless. 

The calculations reported in Section 5.2 with the two-sided SM definitely demonstrate the 
secondary bifurcations that cause wavelength halving in cellular solidification by verifying 
previous predictions.16 These results also demonstrate the robustness of the mixed mapping 
method to compute the evolution in the number of cells in the sample caused by tip splitting. The 
presence of these secondary bifurcations was linked by Ungar and Brown7 to the presence of 
a codimension-two bifurcation point for cellular structures with a nearly fundamental wave- 
length I ;  calculations in a sample with size L near this value resulted in shifting the secondary 
bifurcation to cells with lower deflection (smaller A )  that can be resolved by the Monge 
representation. Similar results are reported elsewhere. ' 

In the finite element formulation described in Section 4 a lower-order approximation (bilinear 
elements) is used for the unknowns (x, y)  of the mapping problem than the approximation used 
for the concentration field (biquadratic elements). The use of this subparametric mapping is 
justified since the degree of accuracy to which the mapping equations are solved does not affect 
the accuracy of the concentration field, which is the physical unknown of interest. However, at the 
interface the mapping problem is coupled to the solidification problem through the 
Gibbs-Thomson equation. Here, due to the subparametric mapping, the degrees of freedom 
allowed for the position (x, y )  of the interface are only half as many as those allowed for the 
concentrations along the interface. Hence error due to poor approximation of the interface 
position could corrupt the accuracy of the concentration field. This limitation can be removed by 
incorporating transition finite element  approximation^^^ for the elements adjacent to the inter- 
face instead of using bilinear elements for the unknowns (x, y). These elements reduce to 
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quadratic approximations along the side adjacent to the interface and to linear approximations 
along the remaining three sides, allowing for both quadratic approximation of the interface shape 
and subparametric mapping for the rest of the domain. 

The generality of the mixed mapping method leads to added expense of the solution of the 
mapping equations (22) and (24) throughout the two-dimensional domain, instead of the calcu- 
lation of a one-dimensional shape function which characterizes an algebraic mapping method. 
This expense is especially significant for solution of the SM of microstructure solidification which 
is described by a single field equation. This increase is offset slightly by using lower-order finite 
element representations for the mapping variables (30) than for the concentration variables (29). 
This incremental expense is smaller when more field equations are solved, as is the case in viscous 
free surface  flow^^-'^ and in analyses of solidification systems with con~ect ion .~ '*~* Application 
of the mapping method to these classes of problems is under way. 

Note Added in Proof 

While this article was in proof Christodoulou and S ~ r i v e n ~ ~  pointed out that the mapping 
equations (20) and (21) should be used with E~ < 0 and E~ <O, instead of the positive values reported 
in Reference 10. In this case the combination of the orthogonality and concentration control terms 
does not alone change the mathematical type and the mapping can be used successfully without the 
contribution from the smoothness functional. We performed calculations using equations (20) and 
(21) with < 0, g2 < 0 and 0 < F 4 1 for the domains shown in Figure 6 and the results were 
satisfactory for a suitable choice of the function g(q) in equation (21). However, we have not been 
able to create satisfactory maps using this version of equations (20) and (21) for the domains shown 
in Figure 7(b). 
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APPENDIX: CONVERSION OF VARIATIONAL EQUATIONS TO 

The surface and line integrals appearing in the fomulation of Section 4 are calculated using the 
following rules for any function g( 5 ,  q): 

TRANSFORMED CO-ORDINATES 

j /dA = j;l j; gJd5dv3 

jdD,., gds = j; "Cl,= -1 , l  d5, 

r r i  
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where 

4; = J(x:  + Y ; ) ,  q q  Jb,: + Y,‘), J X;Y, - ?c,Y<. 

The: gradient operator is transformed as 

vg  = J [ ( S S Y ,  - 9,Y:)k + (9q-q - STX,)2,1. 

The melt/solid interface is described by the curve V(X, y)=O and, according to (4), the unit vector 
normal to the interface is 

The derivative of a function g(5, q )  with respect to the arc length along the interface is given by [!!I q = o  =[%I q< q=o  
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